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work in this topical area, empiricists such as Euler and
Lagrange, and their followers Laplace and the neo-
Cartesian and plagiarist of Abel, Cauchy, flunked the test.
(See Box 4.)

In the meantime, a number of important developments by

the followers of the work of Cusa had occurred. Most impor-
tant was the discovery of modern astronomy by a faithful fol-
lower of Cusa, Johannes Kepler, and some important work by
a friend of Kepler’s, the Napier who developed his system of
logarithms from the basis of the ancient Pythagorean princi-

Archytus performed a Promethean act,
when he discovered a Sphaerics-guid-
ed solution to the life-and-death para-
dox of doubling the cube. For
Archytus, that solution lies not in the
visible domain of the cube itself, but
belongs to a higher domain, where
human creativity dances with universal
principles, what Gauss has since called
the complex domain. From that time to
the present, repeated acts of contempt
have been perpetrated against
Archytus, by those heirs of the legacy
of Aristotle and Euclid, who, on behalf
of their oligarchical masters, wish to
rob man of his fire, and replace it with
soulless analytic formulas.

It was more than 1,100 years after
Diophantes, the Greek father of alge-
bra, who had developed his mathemat-
ics in the dwindling tradition of the
Pythagoreans, that Gerolamo Cardan
first introduced (in approaching the
problem of squaring and cubing) the
idea of complex roots, as formal solu-
tions to algebraic problems. For exam-
ple, if given the equation x2�10x + 40,
the laws of algebra state that for an
equation with rational coefficients, the
first coefficient (i.e., 10) will be the
sum of the solutions, and the last term
(i.e., 40) will be the product of those
solutions.

For the notorious gambler Cardan,
acting in the empirical tradition of Al-
Khowarizmi (famed for the notion of
completing the square), this becomes a

problem of finding a way to divide a line
of 10 units, in such a way, that the two
parts multiplied will equal 40 (Figure 1).

But since the greatest area that can
be created through this process (a
square) has an area of 25, the problem
is considered physically absurd, but
algebraically solvable, if we allow for
numbers of the form (a + b √�1); in
this case, (5 + 15√�1) and (5�15√�1).
Quantities of this type became know as
imaginaries, and they haunted Cardan
as he tackled the physical problem of
cubing. Unlike Archytas, who asked
which complex action has the power to
produce cubic magnitudes, Cardan
started, not with action, but with the
sense-certain nature of material cubes
and their algebraic derivative.

He laid out his cubic problem thus:
“For example, let the cube of GH and
six times the side GH be equal to 20. I
take 2 cubes AE and CL whose differ-
ence shall be 20, so that the side AC by
side CK shall be 2 . . . (Figure 2).”

From here Cardan’s equation for
general solutions to cubic problems
“falls out” algebraically.

Apply to the equation x3�12x =10,

the method prescribed by Cardan,
which is in fact purely analytical,
despite his request for an initial dia-
gramming of a cube (Figure 3):

We let u3�v3 = 10 and u3 � v3 =
�64, and consequently u � v = �4.

If now we put in u�v for x, we have:
(u�v)3�12(u�v) = u3�v3,
u3�3u2v + 3uv2�v3�12u + 12v

= u3�v3,

BOX 4

Cardan and Complex Roots

FIGURE 3

FIGURE 1

FIGURE 2
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ples of Sphaerics.2 Of the several outstanding followers of Kepler who were also forerunners of the discoveries of

3uv(v�u) = 12(u�v).
And since uv = �4, then 12(u�v) =

12(u�v).
And therefore, x = u�v is in

accord with our original premises.
And since u3 = 10�v3 = 10+64/u3,

and because u3v3 = �64, we then
have u6 = 10u3 + 64: a quadratic, that
can be solved using the age-old quad-
ratic formula: �b/2a ± √(b2�4ac)/2a
(a formula easily derived from Al-
Khowarizmi’s work on completing the
square).

Using that formula, we come to the
“imaginary” solutions:

u = 5 ± (√�156)/2, 
v = � 4/[5 ± (√�156)/2],
x = u�v
= 5 ± (√156)/2 + 4/[5 ± (√�156)/2].
Again, the algebra, applied to what

is in actuality a physical problem, has
produced something ambiguous and
unknowable.

When carrying out algebraic investi-
gations of literal squares and cubes, the
occurrence of complex quantities, as
solutions, is a total paradox. For what is
a negative cube in the material world?
(Is 3√�x3 the edge of a cube whose vol-
ume is �x?) And, even more absurd,
what would something like x4 or x5, etc.,
“look like”? Thus, geometry, when con-
demned to “flat Earth” three-dimen-
sional Euclidean space, loses the name
of action, taking on the character of a
stiffened corpse, no longer susceptible
to cognitive interaction; and algebra
becomes a pseudo-science, practiced to
maintain an “ivory tower” fantasy.

The Gambler de Moivre
It was continuing in this depraved

tradition, that a close ally and co-con-
spirator of Sir Isaac Newton, Abraham

de Moivre (whose chief form of
employment was as an advisor to the
gamblers of his day, much like the bulk
of today’s mathematicians who work
for the various casino-like hedge funds
of Wall Street) seems to be the first to
have found it convenient to apply
trigonometric laws (although with no
connection to the circular action from
which those laws were born), to his
sadistic investigation of the cubic
roots. In one particular stab, he begins
with what he calls an “impossible
binomial” (a + √�b), and seeks to find
its cubic roots. Knowing, from his
intense indoctrination in mathematical
textbooks, that the trigonometric equa-
tion 4cos3A/3�3cosA/3 = cosA, asso-
ciated with the trisection of an angle,
could be made to yield 3 solutions, he
set out to contort the algebraic equa-
tion, for a cubed binomial (x + √�y)3

= x3 + 3x2√�y�3xy�y√�y into a
form which is algebraically akin to that
of the trigonometric formula. (That is,
4x3�3mx = a = 4(x/r)3�3(x/r) = c/r
= 4x3�3r2 x = r2c).

Once that’s been achieved, de
Moivre carries out a series of algebraic
manipulations of the trigonometric
equation, winds up with three angular
solutions, “applies the table of sines,”
and gets three new fractions, which he
then plugs back into his previously
derived algebraic equation, fondles it a
bit, and ends up with the three desired
algebraic solutions, two of which are
“imaginary” (a + √�b).

So, like Cardan, he winds up with
algebraic magnitudes, that if squared,
would be said to have produced a neg-
ative area—a paradox, and doubly so
in this case, in that this was achieved
by using circular (trigonometric) func-

tions. But, for de Moivre, whose cre-
ativity was crippled by that “drill and
grill” abuse at the hands of his “ivory
tower” controllers, there is no paradox.
The fact that his algebraic investiga-
tions lead him to the use of circular
functions, where z = x + iy becomes z
= r(cos� + isin�), and finding the cube
root takes the form of finding the
cubed root of a radius ( 3√r) and trisect-
ing the angle (�/3), is only formally con-
sequential and ontologically unknowable.
For de Moivre there is no action, or
higher ordering principles at work, only
the “imaginary” shadow world idea of
algebra and its “right answers.”

Unfortunately, due to his obsession
with, or better, possession by formal
algebra, and his absolute denial of the
knowability of the principles of action,
characteristic of constructive geometry,
the paradoxical occurrence of complex
roots, and the handling of them by
trigonometric properties, never pro-
voked de Moivre to ask those questions
of cause, which spawned the hypothe-
sis made by Gauss, that the “imaginar-
ies” were reflections of an action,
which is ontologically transcendental.

It was his mind’s shackling at the
hands of algebraic formalism, which
barred him from looking to the physi-
cal geometry behind the shadows of
his formulas, to discover, that what he
had deemed to be “impossible,” were
in fact the effects of a true physical
action. For example, in the physical
construction for the trisection of the
angle, two of the solutions that would
have appeared to de Moivre to be
imaginary, are in fact real (Figure 4).

In other words complex numbers
are not arithmetic quantities, but rather

__________

2. On the significance of the work of Napier, we shall return, at a later point
in this report, to examine Gauss’s reference to Napier’s Pentagramma
Mirificum, in Gauss’s treatment of the subject of hypergeometry, and 

Riemann’s continuation of that line of investigation as his own development
of the principles of hypergeometry.

Box 4 continues on next page



24 Feature EIR December 23, 2005

Leibniz, Fermat, Pascal, and Huyghens were outstanding con-
tributors. Fermat’s discovery of quickest time was the most
important of the these contributions for defining the principles
of a competent physical science. (See Box 5.)

The work of Huyghens on the subject of quickest time, was

not the right definition for the principle of quickest time, but it
led the way toward the discovery of the solution by the joint
effort of Leibniz and his collaborator Jean Bernoulli: Leibniz’s
fundamental principle of the physical calculus, the universal,
catenary-cued principle of universal physical least action. The

haunts, of a knowable, higher action,
which subsumes the algebra. So it was
Gauss, who was left to re-stoke that
flame of Pythagorean Sphaerics,
which had been reduced to smoldering
ashes by those followers of the cult of
Newton (Figure 5).

It was one of de Moivre’s students,
d’Alembert, who thought he could
totally purge science of geometry, by
seemingly introducing it in his attempt
at a proof of the fundamental theorem

of algebra. In effect, he
employs what is com-
monly known today as
the “plug and chug” me-
thod of Cartesian point-
plotting, of trying to
close in, getting infinite-
ly closer to the solution.

So, given the algebra-
ic problem of x2 + 1 =
0, the method of
d’Alembert calls for sim-
ply plugging all the pos-
sible real values in for
the variable and plotting
the variable as the ordi-
nate and the function as
the abscissa (Figure 6).

For cases where the
reals don’t lead to an answer, such as
the x2 + 1 = 0 problem, d’Alembert
calls upon the magic of the imaginar-
ies, and says we can use quantities of
the form a + b√�1 to yield solutions. If
we plug in all the possible a + b√�1
quantities, we produce a curve that
does cross the imaginary ordinate, giv-
ing us our two answers (Figure 7).

Gauss’s Critique
To this, Gauss says of d’Alembert’s

proof: “It is proper to observe, that
d’Alembert applied geometric consid-
erations in the exposition of his proof
and looked upon X as the abscissa, and
x as the ordinate of a curve . . . but all
his reasoning, if one considers only
what is essential, rests not on geomet-
ric but on purely analytic principles,
and an imaginary curve and imaginary
ordinate are rather hard concepts and
may offend a reader of our time.”

This is the crux of Gauss’s attack on
the whole of the works of Euler,

d’Alembert, et al., in his 1799 proof of
the Fundamental Theorem of Algebra:
Their proofs were conspicuously void
of constructive geometry, and hence
human creativity. At best, they simply
investigated that which is, as opposed
to asking the question: What has the
power to make possible that which is?

It is no hyperbole to say that this
fight, over the challenge of discovering
a solution to the paradox associated
with the doubling of the cube, is a life-
and-death one.

As history has shown, and as
LaRouche’s discovery has made
known, man only survives when he

FIGURE 4

Three solutions to cubic function in the complex domain:
Tripling the angle of any of the three solutions of 20°, 140°,
and 260° will bring you to the desired 60°.

FIGURE 5

Cubing a complex magnitude (a + b√�1
in the complex domain, a combination of
rotation and extension.

-3� -2� -1� 1� 2� 3�

2�

4�

6�

8�

10�

FIGURE 6

Equation X = x2 + 1:

x �3 �2 �1 0 1 2 3__________________________________

X 10 5 2 1 2 5 10
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significance of Leibniz’s discoveries, was kept among the
active pursuits of science during the Eighteenth Century by,
chiefly, a scientist who became a crucial promoter of the cause
of American freedom, Franklin’s one-time host Abraham
Kästner. Kästner was also one of the two most significant

teachers of the young Carl F. Gauss. Kästner was the first to
prove in modern times, that a valid physical geometry must be
not merely non-Euclidean, but must be recognized as anti-
Euclidean, since the rectilinear kernel of assumptions of the
Euclidean system, the rectilinear axiomatics, was provably

progresses, and he only progresses
when he applies his uniquely human
power of cognition to those paradox-
es which the universe communicates
to us. Constructive geometry, in the
complex domain, of the tradition of
Archytus, through Gauss and
Riemann, is the embodiment of those
creative acts, which not only express,
but also strengthen, that relationship
between man and the universe. Any
attempt to formalize and to degrade
such universal problems of physical
geometry to the level of the analytic,
is nothing short of a crime against
humanity, performed on behalf of
those whom Dick Cheney calls
master.

—Cody Jones and Chase Jordan
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FIGURE 7

Equation X = x2 + 1:

x �3i �2i �i 0 i 2i 3i__________________________________

X �8 �3 0 1 0 �3 �8

What the reason was for the change in
light’s direction when passing from
one medium to another was a major
fight in the 17th Century, and it must
become so, again, today. Fermat’s
principle that light’s action is deter-
mined by the principle of quickest
time, was a political statement, a clear
attack on the prevalent empiricist
thinking, and a call back to the method
of Greek knowledge. It demanded a
conception of physical science that
places man in his proper place—as in
the image of, and participating in a
single Creation, overthrowing the oli-
garchical view that placed man infi-
nitely below the incomprehensible
caprice of the Olympian gods and
human feudal lords.

The refractive behavior of light had
been a source of study and consterna-
tion for centuries, since no simple rela-

tionship between the angles of inci-
dence and refraction could be deter-
mined (Figure 1). It was in 1621, that
the Dutch investigator Willebrord Snell
determined that it is the sines of the
angles of incidence and refraction that
maintain a constant ratio for a given
pair of media, an experiment that is
worth carrying out yourself (Figure 2).

Although Snell is correct, this
observation of effects does not address
itself to cause. Descartes, insisting that
light had to be understood as ballistic
particles (in opposition to da Vinci,
and to keep his purely mechanical out-
look) was forced to conclude, erro-
neously, that light actually sped up
upon entering water. He also claimed
Snell’s discovery as his own! Fermat
found this speeding up to be absurd,
and sought to determine the cause for

BOX 5

Fermat’s Principle

FIGURE 1

In an experiment conducted by the LYM, the path of light is seen to change
direction when it passes from air to water.

Box 5 continues on next page


